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A previously proposed method of solving scalar [1] and vector [2] integral equations with a meromorphic Fourier kernel symbol, 
which arise in problems of the dynamic contact of a punch with an elastic layer, is extended to the case of a multilayered packet 
of firfite thickness. The general scheme for the solution (the search for the zeros and the poles of the symbol of the kernel, reduction 
to an infinite algebraic system starting from the conditions for the removability of the singularities of the Fourier transform and 
the regularization of the system by taking account of the nature of the singularity of the solution at the boundary of the contact 
area) remains on the whole as before. The main difference in the case of a multilayered packet is the increasing difficulties in 
constructing the symbol of the kernel and the search for its zeros and poles in the complex plane. A description of the special 
features in carrying out these steps is given and numerical results which show the trajectories of the motion of the poles in the 
complex plane for a continuous change in the elastic properties of the layers are represented, as well as the effect of the lamination 
on the form of the frequency dependence of the contact rigidity of the packet. © 1998 Elsevier Science Ltd. All rights reserved. 

Mixed boundary-value problems for multilayered media using Fourier integral transforms with respect 
to the horizontalx andy coordinates reduce to integral equations of the convolution type in the unknown 
contact stresses 

q = Xlz=O, • = {Xxz, Xye, Oz}: 

]]k(x-g,y-n)q(g,n)agaq=f(x,y), 
N 

(x,y)Gf  (1) 

or to the equivalent functional equations 

K(aj ,a2) Q(al ,a2) = F(a, ,a2)+ ~(a~ ,a 2) (2) 

in the two unknowns Q, ~ [3, 4]. Here, f = u6=0, (x, y) e f2 is a specified displacement of the surface 
in the contact area f2 and K, Q, F, • are the Fourier transforms of the matrix-kernel k and the vectors 
q, f, q~(~P = u6=0, (x, y) ~ f2), respectively. 

When the contact area f2 has an arbitrary shape, direct numerical methods are used to solve Eq. (1). 
These involve approximating the contact area by a grid and expanding the unknown function q in a 
certain system of basis functions (for example, see the variational-difference method~). When ~ is 
a strip or a circle, Eq. (1) becomes one-dimensional (integration only with respect to ~ or with respect 

2 2 to p = ~/(~ + _rl )) and the functional relation (2) correspondingly also depends only on the single variable 
2 2 a = al or ~/(a t + a2). Analytical approaches, like the Wiener-Hopf method, are used to solve it together 

with an expansion in splines or orthogonal polynomials with a weight which takes account of the nature 
of the singularity of the solution at the punch boundaries. If, in this case, the Fourier symbol of the 
kernel K is a meromorphic function (as, for example, in the case of a packet of layers of finite thickness), 
the solution can be obtained in closed form as a series with unknown coefficients sk which are determined 
from the infinite algebraic system 

Y' arks, = It, l = 1,2,3 .... (3) 
k=l 

A method was proposed in [1, 2] for reducing the problem to system (3) and for its regularization. 
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This, as in the classical Wiener-Hopf method, it does not require factorization of the symbol of the 
kernel K. This is particularly important when Eq. (2) is a vector equation (contact with adhesion, 
problems of the diffraction of normal modes at a horizontal crack, inclusion, interlayer defect, etc.) 
since the factorization of the matrix K is a separate and quite tedious problem. 

In the case of a multilayered packet, if the poles ~ of the elements of the matrix K and the zeros zl 
of its determinant (the roots of the functions A(o~), A2(tz) in [2]) have already been found, the subsequent 
scheme for constructing the solution does not formally differ in any way from the scheme which has 
been described previously for a homogeneous layer [1, 2]. However, the elements of K(t~) (the functions 
M, P and R [2]) are not yet written out here in explicit form and the zeros and poles zl, ~ are not set 
up in the complex plane tx along the branches of the graph of the exponential function in accordance 
with the known [3] asymptotic behaviour for l, k --> - .  From the point of view of numerical implementa- 
tion, these differences are important since: 

1. the numerical construction of the elements K(et), for example, in accordance with the algorithms 
which have previously been used for multilayer media, gives a coincident (removable) subset of zeros 
and poles zi = ~ which, in order to avoid dividing by zero, have first to be analytically eliminated when 
forming system (3) (see [1, formula (1.9)] and [2, formula (1.6)]); 

2. the asymptotic values of zl, ~ are used as the initial values for finding the "distant" roots in the 
complex plane. 

The routes by which the above-mentioned difficulties can be overcome and the special features of 
the modification of the numerical scheme are indicated below by taking an axially symmetric contact 
problem as the example. 

Consider the steady-state harmonic osciUations of a packet M of elastic layers Si of thickness h; which 
-at~ ~ 2 2 are induced by specified displacements fe in a circular domain fl: 0 --~ r ~< a, r = ~(x + y ) on its 

surface (a circular punch); Si: zi ~< z ~< Zi-l, --~ ~< x,y ~< ~; zi = Z~_l - hi, i = 1, 2 , . . . ,  M; Zo = O, z ,~ = 
-h, h is the overall thickness of the packet and ~., la/, p~ are the elasticity constants and density of the 
ith layer (Fig. 1). The conditions of rigid adhesion 

Z"~7.i; Ui=Ui+ I, "¢i='Ti+l, i = 1 , 2  ..... M - 1  (4) 

are specified at the boundaries of separation of the layers zi. 
The lower edge is rigidly fixed 

z = zM = - h :  uM = 0 (5) 

and the conditions of contact with the vibrating punch 

~q(r),  (x,y) ~ 
z = 0 : " r j = [ 0  ' ( x , y ) E f ~ '  u l f f ( r ) ,  (x,y)¢[2 (6) 

are imposed on the upper edge, which is stress-free. 
Here, u/(r, z) = {u/,, u~}, "ti(r, z) = (xi, r,z, o/~} are the displacement and stress vectors in a layer Si, 

f(r) = ~fr, fz} are the specified displacements of the punch and q(r) = {qr, qz} are the unknown contact 
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Fig. 1. 
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stresses in cylindrical coordinates r, 9 and z (torsional vibrations are ignored). By virtue of  the linearity 
of the problem, the harmonic factor e -~°~ is omitted. 

In order to construct Green's  matrix K(a) ,  we make use of  the solution in Fourier transforms of  the 
auxiliary problem for a homogeneous layer Si on the edges of which the loads qi, q/+l are specified 

U i (ct, z) = K i(ct, z) Qi(a)  + L i(a, z) Qi. t  (ct), 

i = 1 , 2  .. . . .  M - 1  (7 )  

and, in the case of the lower layer SM with condition (5) imposed on the lower surface, 

U U (a, Z) = K u (ct, z )Qu (a) (8) 

The elements of the matrices K/(a, z), L/(a, z) are obtained in explicit form, and the system of 
M -  1 vector equations 

K i ( z i ) Q i  + (Li (z i  ) - Ki+I (Zi )) Qi+I - Li+I (zi )Qi+ 2 = o 

i= 1,2 ..... M - 2  (9) 

Ku- i  (ZM-I)QM-I + (LM-I(ZM-w)- KM(zM_1))Qu = 0 

in the M unknowns Q/(a) arises from the condition for the displacements on the boundaries of  the 
layers (4) to be equal. This system of vector equations enables us to express Q2, Q3, • • • , QM in terms 
of Q = Q1 using the recurrent matrix relations 

Qi = D i Q M ,  i =  1,2 ..... M - i  

_ -! 
Du- i  -Kh.M_l(Ko.u -Lh.M_z), D,u ---E (lO) 

D i = K h l / [ ( K 0 , i +  l - Lh.i)Di+ I + L0.i+IDi+ 2 ] 

i = M - 2 ,  M - 3  ..... 1 

from which it follows that 

U(0) = KQ. K = Ko, t + Lo.ID2Di "l (11) 

Here, K0, i, L0, i are the values of the matrices K~-(z), Li(z) on the upper surface of a layer Si: z = zi-x, 
and Kh, i, Lh, i are the values of  the matrices on the lower surface z = zi. For brevity, the dependence 
of the functions and the matrix-functions on a in (9)-(11) is not, as a rule, subsequently indicated. 

Actually, the algorithm which is given is a version of  the method of matrix propagators [6] or transfer 
matrices [7] for multilayer media. As in the algorithm previously used [5], the matrices K0~., L0~., Kh~, 
Lh~ do not contain increasing exponential functions but the very essential explicit form of their elements 
enables one to separate out and to abbreviate the factors which gives the removable zeros and poles. 
In particular, it follows from representation (10) in the case of a two-layer packet that 

K = K0, I + L0.t (K0, 2 - Lh,i )-' Kh.i 

K0.,  = K5.,  = IIi P3 _ R3 Ir 

K0.2 = - ~ " -  2 K~,2  ~_iap2 R2 ~ 

I Kh'l = ~ Kh'l =l-iaej R, 

Lo,,, = ] i a 2 M , - i a P i ]  
L0.1 = ~ Lo., I-ia/~ - R, I 

Lh'l AI ' II-iae3 R3 II 

(12) 

where 
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M t = y2X22(-y2st + a2yiY2s2)l(2ict2), Pt = X2YtY2Y(c2 - c t ) /2  

& = -YI (Y + a2)(y,y2a2si + y2s2) 

M2 = K/2~2 2 (a2C25! -- ~l~'2 ~] 32) I(2ia2) 

P~ = (~, ~2 (3= ~ + ~ )  (t - ~, ~2 ) + (=2 (=2 + ~t~) + 2~ ,~ ) )  ~, ~2) 

M 3 = iy2x ~ (YiY2a2cls2 - y2c2s I ) / (2a ~) 

= TtT2"¢ ( a= + '0  (qc2 - 1)- ( ~ a  2 + ~3)s~s= 

R3 = YtX 2(YtTxa2c2sl - T2c~s2) 12 

A I = 21.t~ (-2a2y~y2y 2 (1 - c~c 2) - (y4 + ot4y~y~)sts 2) 

A 2 = 1£2 ((~'~2(40~2~ - (i5 ~ + 4a4)~t~2) + ( 4 a 2 ~  + a~52)}~}2) 

~,~ , z~=~l'~--~ ~, ~,~: p2 ,o~ , ~ = P 2  ' ~  
X2 = Xt +21£~ 1£l X2 +21£2 !£2 

f i= tx2+~  2, cn=chy.hl ,  s .=shynh I, n= l ,2  

for y, y. ,  c . ,  s . ,  etc., the representations are the same with X~ replaced by Xn (n = 1, 2) and h i by h 

A'A2 K,~, K ;  I -iR4 (zP4 I 
(K0. 2 - Lh.i) -I = 0~2(iP42 - M4R4) = i_ap 4 _a2M4l (13) 

M4 = A~M2 - A 2 M  3, P4=a~e2-a2P~, ~4=aiR:-a2R3 

The relations 

Ct2(ip4 2 - M4R4) = A2S, S = S*A I 
S* = i(A,T I1£ 2 + A2DI1£1)I2 +~2(M3R2 + M2R 3 - 2iP2P3) 

D = (a  4 + y2 )yiy2ctc: _ a 2 (y2y~ + y2)sls 2 _ 2a2Yiy2y 

T = 2a2~/,~'2 (I  - c, c2) + ( a4 + ~/~Y~)~l~2 

enable us to separate out and abbreviate the factors AI, A2 in (13). As a result, the matrix K takes the 
form 

X = (Xo., + Lo.,K;K;. , /S)/A, (14) 

In the scalar case of frictionless contact, the final expression for Uz, which does not contain removable 
singularities, is rewritten in the following form 

u, (o)  = KnQ,  = YQ, / ( ths* )  

Y = -S'R3 +/a=~(~& - 2R~)+  R~M2 - A2x/(2~ h)  

X = -iY~Y2X~ ((y + a 2)(ct2YtY2stc 1 + y2s2c 2 ) -  2"~ 2 (Ycls 2 + y iY2c2si )) / 4 
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In the general case, the zeros zt are found as the zeros of the determinant of the matrix K(a)  (in the 
scalar case, they are the zeros of the numerator of the corresponding element of K(tx)) and the poles 

are found as the roots of the equation Al(ct)S* (or) = 0. 
It was shown in [8] that, when there is sufficient contrast in the elastic properties of the layers, the 

dispersion equation in the case of large ot splits into the asymptotically independent dispersion equations 
corresponding to each layer separately. This fact can be used when choosing the initial values of the 
"distant" roots. However, a search based on a stepwise refinement of their position as the elastic 
properties of the layers are smoothly changed, beginning from the known static (to = 0) distribution 
for a homogeneous layer, turns out to be more reliable and also works in the case when there is a small 
contrast between the layers. When the required values of the elasticity moduli ~., It/and the densities 
Pi of the layers have been obtained, the resulting collection of values of z °, C ° is stored in a separate 
file and the subsequent scheme for searching forzl(to), ~(to) in the case of a certain required frequency 
is the same as that used previously [1, 2]: the trajectory of the motion of the first 10-30 roots, which 
depend strongly on the frequency to, is also traced in a stepwise manner in the complex plane when 
0 -< to ~< o)l and the remaining roots are refined by the method of parabolae, starting from the initial 
values z °, ~ which thereby play the role of the asymptotic form of the roots in the previous scheme. 
Their number must be sufficient for summation, with the required accuracy, of the series which arise 
in the regularization of system (3). 

As an example, the trajectories of the drift of the poles ~ are shown in Fig. 2, while in Fig. 3 we show zeros zt 
in the complex plane cx, when ~0 = 0 in the case of a two-layer packet (hi = h2 = 0.5) and the ratio of the velocities 
of the transverse waves of the layers ~ = us, 1, u~, 2 is changed. The initial position of the first 30 zb ~ for a 
homogeneous layer with the dimensionless parameters h = 1, us = 1, O = 1, v = 0.3 (v is Poisson's ratio) are denoted 
by the open circles. The ratio 13 was varied: (1) from 1 to 0.02 for given fixed values for the lower layer $2 (the 
superscript 0 is used for l~ = 0.02 in the numbering of the poles); (2) from 1 to 10 in the case of fixed properties 
of $1 (the superscript oo). The intermediate positions of the poles for us, 1 = 0.5; u~, 2 = 1 are denoted by small 
crosses while the intermediate positions of the poles for u~, 1 = 0.5; u~, 2 = 0.5 are denoted by asterisks, respectively. 

It should be noted with respect to the regularization of system (3) that the method used in [1, 2], which 
is based on taking account of the asymptotic behaviour of sk when k --> - ,  is a special case of a more general 
hybrid scheme which occupies an intermediate position between expansion in orthogonal polynomials and 
reduction to infinite systems. This scheme, which was originally proposed for regularizing infinite systems 
in problems concerning composite and stepped waveguides [9], has also been found to be more effective 
when solving the contact problems in question. Within the framework of this scheme, the unknown Sk are 
replaced in system (3), starting from a certain number k = N1 + 1, not by their asymptotic form as in [2], 
but are expressed in terms of N2 unknown coefficients of the expansion of q(r) in orthogonal polynomials 

q( r )=  ~ ejq)j(r), q)j(r)=(a-r)-~P(°_i -y2) 
j=l  

(pja, ~(x) are Jacobi polynomials). 
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Fig. 2. Fig. 3. 
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The relation between Sk and cj follows from the same explicit representation of Sk in terms of Q(~),  
which has been used previously to obtain the asymptotic form of Sk. For example, in the case of frictionless 
contact [1], from the relations 

a 

sk =~i HCol)(a~k) res Kfcx)l~_C,_ Q(~k Kk, Q(ot) = 27t~o q(r)J°(°tr)rdr 

(n0 (1), J0 are Hankel and Bessel functions), it follows that 

N2 = ItiHtol)(a~k ) res K(0t)~tt=~k ~k i tpj (r)Jo(~kr) rdr s k = Y, d ~ e j ,  dkj 
jffil o 

In this case, system (3) reduces to the well-conditioned asymptotically equivalent system 

NI N2 
~, a t t s k + ~ ,  b u c ] = f / ,  / = 1 , 2  ..... N; btj= ~ a~dkj 

k=l  k=l  k = N  1 +1 

of the comparatively small dimension N = N1 + N2. The previous method of regularization is obtained 
when the magnitude of N1 is sufficiently large and N2 = 1 and the value of the integral in dkj changes 
its asymptotic form when I ~ I ~ ~. 

The frequency dependences of the modulus of dynamic rigidity 

WO 

are presented in Fig. 4 as an example, where w are the vertical displacements of the rigid punch which makes 
frictionless contact: f = {0, w} for the two-layer packet considered above when [I = 0.5 (a soft layer on a rigid 
layer, line 1) and 13 = 2 (a rigid layer on a soft layer, line 2); the radius a = 1. The dependence IPz I for a homogeneous 
layer [3 = 1 [1, 2] is represented by the dashed curve. 

This research was supported by the International Science Foundation (J5P100) and the Russian 
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